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Depression of an infinite liquid surface by an 
incompressible gas jet 
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The problem of small angle depressions in a liquid surface due to an impinging 
two-dimensional potential jet is considered. Using conformal mapping methods 
and finite Hilbert transforms, the problem is formulated as a non-linear 
singular integral equation. The integral equation is approximated by a set of 
non-linear algebraic equations which are solved numerically by a method of 
repeated linear corrections. In addition, an asymptotic solution (for low jet 
velocity) is derived. 

From the numerical solutions of the integral equation, the liquid-surface pro- 
files and the free streamlines of the jet are calculated for four cases. These 
results verify the appearance of lips on the liquid surface which have been ob- 
served experimentally by others. 

1. Introduction 
Recently, an extensive experimental study of a gas jet impinging on a liquid 

surface has been carried out by Banks & Chandrasekhara (1963). For the case 
of low jet velocity, their results show a clearly defined cavity in the liquid 
which has its maximum depression at  the centreline; moving away from the 
centreline the liquid rises to form a lip and then finally returns to the original 
level. An inquiry was made whether a simple physical model which assumes 
potential flow of a two-dimensional gas jet impinging symmetrically on an in- 
finite liquid surface could adequately describe this phenomenon. 

Anticipating the use of conformal mapping techniques, some complex vari- 
ables will be introduced. The 2-plane, or physical plane, is shown in figure 1 
and defined by 

where b is the width of the jet at Y = 03. The W-plane, or potential plane, is 
shown in figure 2 (a).  Let 

2 =  X + i Y =  n(x+iy)/b,  (1) 

7T w= @+iY = --($+i$), (2) 
VJ b 

where VJ is the jet velocity at Y = 03, and also due to continuity the velocity a t  
x = & 03. Noting that the volume flow per unit length of the jet is vJ b,  it  follows 
that the jet boundaries (free streamlines) may be labelled Y = 0, 7 ~ .  Due to 
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FIGURE 1. The physical plane. 
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symmetry, the liquid surface may be labelled Y = in, CD 2 0. Finally, the com- 
plex velocity, in non-dimensional form, is defined as 

Bernoulli’s equation for the gas and the liquid may be expressed as 

+PPcV,21Y12fPPc = iPPcG+P,,,., 

where Pc is the local gas pressure, Patm. is the pressure outside of the jet, PL is 
the local liquid pressure, Yo is the depression at the centreline, and g is the gravi- 
tational constant. Velocity head in the liquid is neglected as compared with 
gravity head. 

2. Formulation in complex variables 
The complex potential and complex velocity are related by 

aw g=-- 
dZ 

The boundary condition along the free streamlines is Pa = Pat,.. Hence it 
follows from equation (4) that the boundary condition for f; along the free stream- 
lines is 

If;l2 = 1 on Y = 0,n. 

Along the liquid surface, the requirement is made that PG = PL (i.e. surface tension 
is neglected). From equations (4) and (5) follows 

(7) 

(8) 

where = 2PGVJ2lPL9b. (9) 

Yo = inn, (10) 

4 
nh )512=l- - (Y0-Y)  on Y=&r, @ > O ,  

At the stagnation point, f; = 0 and Y = 0 ,  hence 

which determines the centreline depression. The boundary condition (8) along 
the gas-liquid interface then becomes 

(11) 
4 1f ; I  2--Y -=A on Y =in, @>O. 

The differential equation (6) with boundary conditions (7) and (1 1) defines the 
problem. In order to reduce this problem to an integral equation, a method 
described by Birkhoff & Zarantonello (1957) for jet flow around curved obstacles 
will be applied. Using this method, the liquid surface will be treated as an obstacle 
of unknown shape along which boundary condition (1 1) must hold. 

It is convenient to introduce two additional complex planes. In  figure 2(b)  
is shown the t-plane in which the flow domain is mapped on to the interior of the 
semicircle specified by 

It1 = IE+irl < 1, (7 > 0). 
36-2 
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The points J1, J,, C of the physical plane are mapped on to 1, - 1, i, respectively. 
Hence the free streamlines are mapped on to the real diameter and the liquid 
surface on to the curve 

The T-plane, in which the potential plane Wis mapped on to the upper half-plane, 
is shown in figure 2(c). It provides a convenient link between the W-plane and 
t-plane. Using the conformal transformations 

t = eia (0 < cr < n). 

w = - -  ;log(T2-l)+iB, T =  - - (  ; t+t-l), 
equation (6) may be expressed as 

In  integral form, 

at dt dt 

Z(t) =J' (-) 1+t;  C-l(tl)dtl. 
i t ,  1-t; 

The complex velocity C(t) is expressed more conveniently as 

On the liquid surface (t = eiu, 0 < CT < B), the function (1 + i t ) / ( l  - i t)  has a 
jump of B in its argument at CT = $B, which accounts for the change in the direc- 
tion of velocity across the stagnation point C. Furthermore, on the real diameter 
(t = c, - 1 < [ < l) ,  it  follows that ](1 +ic)/(l-ic)l = 1. Then expressing 

(14) 
the Levi-Civita function SZ as 

it follows from equation (13) that 
Q = O+ir, 

IC(5) I = e2r* 

Hence the boundary condition (7) will be satisfied automatically if r vanishes on 
the real diameter. As a consequence of this and some additional arguments 

based on the continuity of the boundary JICJ,, Birkhoff & Zarantonello showed 
that Q(t) is continuous in the unit circle It I < 1 and can be expanded in a Taylor 

- 
series rn - 

Q ( t )  = C amtm, 
m=O 

where all am are real. 
On the liquid surface (t = cia, 0 < CT < n), equation (15) becomes 

m 

m=O 
Q(eia) = 2 a,(cosmcr+isinmc~). 

Comparing equations (14) and (16) gives 
m m 

? n = O  m=l 
O(u) = I: a,cosmcr, r(cT) = C umsinmcr. (171, (18) 

In  a manner analogous to that of Birkhoff & Zarantonello, it can be shown that 

e(a) = A - in, 
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where A is defined as the angle between the positive Y-axis and the tangent to 
the liquid surface directed so as to have the gas on the right. With this physical 
interpretation of B ( v )  it follows for reasons of symmetry that 

m 

and on t = eiu, 

Since the boundary condition along the free streamlines has been satisfied, 
and the formal expansion of a for the symmetrical case has been found, it remains 
only to  satisfy the boundary condition (1 1) along the liquid surface. Using equa- 
tions (12) and (13) in boundary condition (1 l) yields 

After obtaining the imaginary part of the integrand in equation ( 2 2 )  and then 
differentiating both sides of the equation, the following form is obtained: 

In  the next section, a mathematical relation between T(C)  and B(v) will be 
introduced to supplement equation (23) which was derived from the physical 
model. 

3. Additional formulation through finite Hilbert transforms 

see Tricomi (1957). 
The following formula is well known in the applications of integral equations, 

sin kc 
d d  = n---- sin (+ 

(k = 0,1,2, ...), 
0 cos d - cos v 

where the asterisk denotes the Cauchy principal integral. 
Considering equation (24) for only odd values of k, it follows that 

r s in(2m-l )c  
4 s i n r  dgf  = - ( m =  1 ,2 ,3  ,... ). 

In  view of the expansions (20) and (21), it follows from equation (25)  that 

cos d cos (2m - 1) CT' 

7 ( 4  = - - d d  on a2. 
Thus it is seen that 7(v) is an integral transform of B(cr). In  particular it is a 
finite Hilbert transform where the more familiar notation is accomplished by 
the substitutions 

r = COB%, s = C O S ~ U ' ,  ?(r) = T(CT), B(s) = B ( d ) .  (27) 
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Equation (26) becomes 

(l-r)--*T(r) = -- (1 - 4-3 w ds on g2* 
n *s' -l s -r  

In  terms of the change of variables (27), equation (23) becomes 

Before proceeding, the following approximation is made 
- 

sinB(r) M 6(r). ( 30) 
Physically, this approximation implies that only cases of small cavity tangent 
angles may be considered. The approximation is made in order to achieve a more 
desirable form for numerical analysis. 

Combining equations (28) and (29) to eliminate B(r) while utilizing the approxi- 
mation (30) yields the following integral equation, 

Using the definitions 
35(r) 

R(r)  = - 
~ ( 1  -r)*' 23+ (1 -s)3 

equation (3 1) may be expressed as 

Muskhelishvilli ( 1953) provides the following identity 

By noting that [( 1 - s)3 &'(s)]~=*. = 0, equation (33) becomes 

Consider now another identity 

which can be easily verified by inserting the definition of the principal integral 
and carrying out the differentiation. Using this identity and multiplying 
equation (35) by (1 - r ) t  yields the form 
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Substituting the definitions (32) for R and S ,  equation (36) becomes 
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Ultimately, equation (37) will be solved numerically for ?(r).  Formally, once 7 
has been found then 8 can be obtained from equation (29). An alternate expres- 
sion for 8 comes from inverting the finite Hilbert transform of equation (28). 
Using one of the inversion formulae (see Tricomi) it follows from equation (28) 
that 

4. Equations for the physical variables 

ables will provide a more convenient scale for the numerical analysis: 
In  order to determine the liquid surface profiles, the following change of vari- 

v4 = &(I - T I ,  p4 = &(I - s ) ,  f(v) = - 37(r), B(v) = 8(r) .  (39) 

Under this change of variables, the singular integral equation (37) for 7 becomes 
vzp (-) 1-p2 8 e-fb) 

dp (0 < v < 1). (40) 
1 +p2 
p4- v4 

f(v) = hv- 

Equations (29) and (38) for 8 become 

The set of parametric equations for the liquid surface profiles follows from equa- 
tions (ll), (12) and (13) with changes of variables given by (27) and (39), 

Once f(v) and&) are known, then equations (43) and (44) yield the liquid 

The pressure distribution along the liquid surface follows from Bernoulli's 
surface profile. 

The net vertical force Fe exerted on the liquid surface by the impinging jet can 
be found by integrating the pressure distribution, 
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Utilizing equations (44) and (45) the expression for Fg becomes 
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The force on the surface may also be obtained by elementary momentum con- 
siderations as 

Then from the definition of h follows 

Fv = PabV?. 

Comparison of equations (46) and (47) shows that the integral in equation (46) 
must be equal to unity. This condition will be used later as an estimate of the 
error in the numerical analysis. 

The free streamlines (Y = 0,  n) have been mapped on to the real diameter of 
the semicircle: t = f l ,  - 1 < < 1. Designating (&, 9) as the co-ordinates of a 
point on a free streamline, it follows from equations (6) and (13) that 

After separating equation (48) into real and imaginary parts, a change of vari- 
ables a = - 6 is made, and then integrating the differential expressions using the 
reference values x = &b at 6 = 0 and y = &( 1 + +A) b at fl  = - 1, it follows that 

__ &(u) = !,A/" dw (0 < a < l ) ,  (49) 
(3cosQ(w) - sinQ(w) 

b 3 n 0 1-w2 w 

) d w  (0 < a < 1). (50 )  w 

Once Q(w)  is known these equations constitute a set of parametric equations for 
the free streamline Y? = n. To compute the free streamlines, the coefficients 
a,,-,, from which follows Q, must be known. These coefficients follow directly 
from the expansions (21) and (22 )  as 

O ( c )  cos (2m- 1) crdcr = 7(cr) sin (2m- 1) crdc, (51) 

5. A limiting case and checks on the numerical solution 
A limiting case of the problem considered is that of a two-dimensional jet 

impinging symmetrically on a flat plate; see, for example, Milne-Thomson (1960). 
Infinite liquid density ( A  = 0)  corresponds to this case since the liquid surface 
profile degenerates into a straight line, i.e. O(c) E 0. Hence from equation (51) 
follows 

1imu2,-, = 0 (m = 1,2 ,3 ,  ...). 
A-0 
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Applying condition (52) to the free streamline equations (49) and (50) gives 

This parametric representation is equivalent to the form given by Milne- 
Thomson for jet impingement on a flat plate. 

For very small values of h (and hence very slight depressions) an asymptotic 
solution for f(v) will be derived in $7.  This asymptotic solution will be compared 
with the numerical results of $ 8  as a check. Another check on the numerical 
work was mentioned in $4, namely that the integral in equation (46) should be 
equal to unity. Still another possible check comes from the condition of zero 
slope for the liquid profile a t  X = & co, i.e. O(0) = 6(7r) = 0. In  view of expansion 
(20) this leads to the following criterion for the Fourier coefficients, 

m 

S a2m--1 = 0. 
m=l  

(55 )  

6. End-point evaluations 
Some useful information about the behaviour off(v) at the end-points v = 0,. 1 

can be obtained. From physical arguments, Y ( O ) / b  = ih. Hence from equa- 
tion (43) follows f ( 0 )  = 0. 

In  order to  determine f ' (O) ,  equation (43) was evaluated at  v = 0 utilizing the 
property (56). This gives 

12 lqv) f'(0) = -1- im-. 
7Th,+0 v 

Then using the integral expression (41) for Q(v) i t  follows that 

f'(0) = 0. (57) 

In  the singular integraI equation (40) for f(v), the differentiation generally 
cannot be performed under the integral sign because the integrand is not con- 
tinuous. However, a t  v = 1 the integrand is continuous, and therefore carrying 
out the differentiation and evaluating equation (40) yields 

Equation (58) does not give f (1) explicitly, but this form will prove to be useful 
in the numerical analysis. 

7. Asymptotic solution for f (v)  
As pL -+ CQ, or equivalently A -+ 0 ,  the liquid surface profile approaches a 

straight line. Under this condition the limit for f(v) follows directly from con- 
dition (52) and expansion (21) as 

Iimf(v) = 0. 
A+O 
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Consequently, equation (40) suggests the asymptotic form 
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Utilizing the indefinite integral 

where 

the asymptotic solution forf(v) follows from (59) as 

for h < 1. (60)  

For the asymptotic solution i t  can be shown that f ( 0 )  =f’(O) = 0, which agrees 
with the general results found in 9 6 ;  andf( 1 )  = 3h/5. This solution is particularly 
useful for low jet velocity. 

8. Numerical analysis 
The central problem of the numerical analysis is the determination off(v) from 

the integral equation (40). Oncef(v) is known the remaining quantities of physical 
interest follow directly. 

To approximate the Cauchy principal integral in this equation, first separate 
the integral into the two parts, then specify 8 to be small and disregard the limit 
notation, i.e. 

where 

Proceeding further with the approximation, the two integrals will be approxi- 
mated by trapezoidal rule with the interval of integration being specified as E ;  

hence for N equal intervals E = 1/N. Then equation ( 6 1 )  becomes 

where 0, k: = j ,  

1, otherwise, 
1/2 ,  k : = j + l  ( j + N ) ,  
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and where K,,k = K ( j / N ,  k / N )  and f k  = f ( k / N ) .  This type of approximtion has 
been used previously by Birkhoff (1956). Using this approximation and also 
employing finite differences yields the following set of non-linear algebraic 
equations for fj, 

where 

K:k = 

and 

N 

( t N - i ,  k = N ,  

k = N - 1 ,  N2(N - 1 )  [N4  + ( N  - 1 ) 4 ]  

L k  = [ N 2  + ( N  - 1)2]3 “ 4  - ( N  - 1)4]*  ’ I 
otherwise. 

In  (65)  the special evalution of Ki*, Ic for j = N arises from the approximation of 
equation (58) for f N .  It should be pointed out here that, without the approximation 
sin 0 M 0, the resulting numerical form equivalent to equation (64)  would have 
contained differences in the exponentials of the unknown functions f k ,  which is 
a much less desirable form. 

In  order to compute f,, a method of direct iteration was tried first; however, 
this method yielded very slow convergence or no convergence at all for h > 0.3. 
Consequently, the following method of repeated linear corrections was adopted. 
Let fj’ be an approximate solution of equation (64). Then define 

f, = f; +f;, (66)  

where f(i is a set of corrections to  the approxima;te solution. For [fit < 1, the 
following approximation is suggested: 

e-fk M e- f i ( l -  f;). (67) 

Substituting equations (66)  and (67)  in equation (64)  yields the following set of 
linear equations for the corrections f i : 

N N 

k=l  k=l 
f i+h z K:ke-f;fL = h z K2kCfi-fj’. (68)  

A solution of the equation (68)  can generally be found since h is a specified 
physical parameter and in general the determinant of a,, k + hK? e-fj will not 
vanish. 

Once the set of corrections fi is found and added to f;, a new approximation of 
j, is obtained. This procedure can be repeated until the corrections are sufficiently 
small. 

Using this method, values of f, were calculated for the cases of h = 0.10, 
0.30, 0.50, 0.80 and 1-00. In  each case, the initial choice of an approximate 
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solution was f: = 0. The number of integration intervals was N = 20 (i.e. 
E = 0.05) and the criterion for stopping the correction procedure was 
maxlfil < 0.0001. (It is noteworthy that no more than five repetitions were 
required for the cases considered.) The numerical results are represented graphi- 
cally in figure 3. 

The asymptotic solution (60) for f(v) was evaluated for h = 0.10 and is also 
shown in figure 3. Comparison with the corresponding numerical solution indi- 
cates good agreement. The asymptotic solution is slightly above in the range 

Y 

FIGURE 3. Numerical solutions for f(v). 

0.80 < v < 0.90, but at v = 1.0 there is again very close agreement owing to the 
more accurate approximation a t  this point. 

Using the numerical results forf(v), the vertical co-ordinate of the liquid sur- 
face profile g(v) /b  follows immediately from equation (43 ) .  The horizontal co- 
ordinate Z(v) /b  was found by numerical integration of equation (44 )  with &v) 
being evaluated by a finite difference approximation of equation (42 ) .  The 
results for the liquid surface profiles are shown in figures 4-7. 

As mentioned previously, the integral in the vertical force equation (46) should 
be unity. This integral can be evaluated from the numerical results for f(v). 
Hence these evaluations provide an estimate of the error in the results forf(v). 
Defining the error as 

Error = 1 - (2&/hpLgb2) calculated, 

the results are displayed in table 1. 
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In  order to calculate the free streamlines it is necessary to know the coefficients 
apm--l so that Q(a) may be found from equation (19). From equations (39) and 
(5 1) follows 

a2m--1 = - %S, f[v(a)l sin (2m - 1) a da, (69) 
4 4. 

where v ( a )  = (sing)). 

Using the results for f (v) displayed in figure 3, the first fifteen coefficients were 
determined by numerical integration of equation (69). These results are some- 

X P  

FIGURE 4. Free streamlines and liquid surface profile for 
h = 2p,E72,/pLgb = 0.3. 

-2.4 -1.6 -0.8 

FIGURE 5. Free streamlines and liquid surface profile for 
h = 2p,pJa,/p,gb = 0.5. 
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. -2.4 -16 -@8 0 0.8 1.6 2-4 

x /b  

FIGURE 7. Free streamlines and liquid surface profile for 
h = 2p,'vaJ/pAgb = 1.0. 

TABLE I 

h Error (%I 
0.10 0.0 
0.30 1.1 
0.50 2.4 
0.80 5.1 
1.00 7.6 

Estimate of error based on calculation of the vertical force 
on the liquid. 
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what lengthy for presentation here; however, it should be mentioned that the 
results do show consistency with condition (55). 

In  order to achieve a suitable numerical form of the free-streamline equations 
(49) and (50), the integrals are first separated as 

where 0 < 6 < 1. The second integral in equation (70) and the last integral in 
equation (71) have integrands which take on an indeterminant form at w = 0 
and w = 1 respectively. To evaluate these indeterminant forms, no method of 
evaluation may be used which requires differentiation of Q ( w )  since there is no 
assurance that the differentiated series converges. In the first case an approxima- 
tion can be made as follows: 

In  equation (71), set a = 1 - 6. Since 6 is small, Q(1- 6)/b corresponds to a 
very large value of O/b. It is assumed that Q(1- 6)/b is essentially the same as for 
the flat plate solution. Thus it follows from equations (71) and (54) that 

[W1- &)I2 
4 .  

Since Q(1- 6) < 1, the contribution is negligible. Using these two approxima- 
tions and numerical integration of the remaining integrals, the free streamlines 
were calculated. The results are shown in figures 4-7. In  these calculations, it  was 
found that consideration of only the first six Fourier coefficients a2m-l was 
sufficient. 

9. Discussion of numerical results 
The numerical results of figures 4-7 are given for values of h = 0-30, 0.50, 

0.80 and 1-00 respectively. Also the results for the jet impinging on a plate 
( A  = 0)  are shown on each figure for comparison. For an air jet impinging on 
water, the case of h = 1.0 could, for example, correspond to: pL/pa = 815, 
b = 0.5 in. and V, = 23.4 ft./sec. Lower values of h may be conveniently thought 
of as applying to lower values of V,. 

In  the results for the surface profiles, it  can be seen that as h increases the 
centreline depression increases and the lips on the surface become more prominent 
and more slightly outward. This has been observed experimentally by Banks 
& Chandrasekhara. Using their definition of cavity width as the distance 
between the two lip peaks, the ratio of cavity width to cavity depth at the centre- 
line was calculated from figures 5-7. These results are tabulated in table 2. 
It is difficult to make a comparison with the experimental results of Banks & 
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Chandrasekhara since their values of cavity width to cavity height are plotted 
against a parameter equivalent to hb2/2H2 where H is the jet height above the 
liquid surface. For the problem considered here, H is infinite. However, the 
values of table 2 appear to be qualitatively consistent with their data for large 
values of H ,  i.e. Hlb 2 10. 

Cavity width/ 
h cavity height 

0.5 31.5 
0.8 21.0 
1.0 17.5 

TABLE 2. Ratio of cavity width to cavity height. 

The free streamline results of figures 4-7 show the tendency of the jet to extend 
further without spreading than in the case of the flat plate. This is to be expected 
since the surface is depressed below the original level. 

10. Conclusion 
The simple physical model of a potential flow gas jet impinging on a motion- 

less liquid surface has yielded results which agree with the experimental results 
for cases considered. 
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